Symmetries of Hilbert space effect algebras
نویسنده
چکیده
Let H be a Hilbert space and E(H) the effect algebra on H, that is, E(H) is the set of all self-adjoint operators A : H → H satisfying 0 ≤ A ≤ I. The effect algebra can be equipped with serveral operations and relations that are important in mathematical foundations of quantum mechanics. Automorphisms with respect to these operations or relations are called symmetries. We present a new method that can be used to describe the general form of such maps. The main idea is to reduce this kind of problems to the study of adjacency preserving maps. The efficiency of this approach is illustrated by reproving some known results as well as by obtaining some new theorems. AMS classification: 47B49, 81P10.
منابع مشابه
Some Properties of $ ast $-frames in Hilbert Modules Over Pro-C*-algebras
In this paper, by using the sequence of adjointable operators from pro-C*-algebra $ mathcal{A} $ into a Hilbert $ mathcal{A} $-module $ E $. We introduce frames with bounds in pro-C*-algebra $ mathcal{A} $. New frames in Hilbert modules over pro-C*-algebras are called standard $ ast $-frames of multipliers. Meanwhile, we study several useful properties of standard $ ast $-frames in Hilbert modu...
متن کاملConstruction of Field Algebras with Quantum Symmetry from Local Observables
It has been discussed earlier that (weak quasi-) quantum groups allow for conventional interpretation as internal symmetries in local quantum theory. From general arguments and explicit examples their consistency with (braid-) statistics and locality was established. This work addresses to the reconstruction of quantum symmetries and algebras of eld operators. For every algebra A of observables...
متن کاملCHEBYSHEV SUBALGEBRAS OF JB-ALGEBRAS
In this note, we characterize Chebyshev subalgebras of unital JB-algebras. We exhibit that if B is Chebyshev subalgebra of a unital JB-algebra A, then either B is a trivial subalgebra of A or A= H R .l, where H is a Hilbert space
متن کاملThe witness set of coexistence of quantum effects and its preservers
One of unsolved problems in quantum measurement theory is to characterize coexistence of quantum effects. In this paper, applying positive operator matrix theory, we give a mathematical characterization of the witness set of coexistence of quantum effects and obtain a series of properties of coexistence. We also devote to characterizing bijective morphisms on quantum effects leaving the witness...
متن کاملCharacterizations of the Automorphisms of Hilbert Space Effect Algebras
In this paper we characterize the automorphisms of Hilbert space effect algebras by means of their preserving properties which concern certain relations and quantities appearing in quantummeasurement theory.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. London Math. Society
دوره 88 شماره
صفحات -
تاریخ انتشار 2013